1. (40 points) Let \mathcal{A}_{n} be the events that are observable by time n.Let $N \in \mathbb{N}$. Consider

$$
\Omega_{N}=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right): \omega_{i} \in\{-1,+1\}\right.
$$

equipped with the uniform distribution, denoted by $\mathbb{P} \equiv \mathbb{P}_{N}$. For $1 \leq k \leq N$, let $X_{K}: \Omega_{N} \rightarrow$ $\{-1,1\}$ be given by $X_{k}(\omega)=\omega_{k}$ and for $1 \leq n \leq N$, let $S_{n}: \Omega_{N} \rightarrow\{-1,1\}$ be given by $S_{n}(\omega)=\sum_{k=1}^{n} X_{k}(\omega)$ and $S_{0}=0$.
(a) Show that \mathcal{A}_{n} is closed under complimentation and intersections.
(b) For $1 \leq n \leq N$, show that the mode of S_{n} is $\{0,1\}$ that is

$$
\max \left\{\mathbb{P}\left(S_{n}=a\right): a \in \mathbb{Z}\right\}=\left\{\begin{array}{ll}
\mathbb{P}\left(S_{2 k}=0\right) & \text { if } n=2 k, k \in \mathbb{N} \\
\mathbb{P}\left(S_{2 k-1}=1\right) & \text { if } n=2 k-1, k \in \mathbb{N}
\end{array}=\binom{2 k}{k} \frac{1}{2^{2 k}}\right.
$$

(c) For $a<b, a, b \in \mathbb{Z}, 1 \leq n \leq N$ show that

$$
\mathbb{P}\left(a \leq S_{n} \leq b\right) \leq(b-a+1) \mathbb{P}\left(S_{n} \in\{0,1\}\right)
$$

and conclude that $\lim _{N \rightarrow \infty} \mathbb{P}\left(a \leq S_{N} \leq b\right)=0$.
(d) Let $-\infty<a<0<b<\infty, a, b \in \mathbb{Z}$,

$$
\sigma_{a}=\min \left\{k \geq 1: S_{k}=a\right\} \quad \text { and } \quad \sigma_{b}=\min \left\{k \geq 1: S_{k}=b\right\}
$$

(e) Let $a \in \mathbb{N}$ and $\sigma_{a}=\min \left\{k \geq 1: S_{k}=a\right\}$. Show that

$$
\mathbb{P}\left(\sigma_{a}=n\right)=\frac{a}{n} \mathbb{P}\left(S_{n}=a\right)
$$

2. (20 points) For $x \in \mathbb{Z}^{d}$, let $|x|=\sum_{i=1}^{d}\left|x_{i}\right|$. Let S_{n} be the simple symmetric walk on \mathbb{Z}^{d}. Let

$$
\tau_{R}=\inf \left\{n \geq 0:\left|S_{n}\right|=R\right\}
$$

Let $h: \mathbb{Z}^{d} \rightarrow[0, \infty)$ be given by

$$
h(x)=\mathbb{P}_{x}\left(\tau_{30}<\tau_{1}\right)
$$

Show that
(a) $h(x)=1$ whenever $|x| \geq 30$
(b) $h(x)=0$ whenever $|x| \leq 1$
(c) h is harmonic on the set $1<|x|<30$, i.e.

$$
h(x)=\frac{1}{2 d}\left(\sum_{i=1}^{d} h\left(x+e_{d}\right)+h\left(x-e_{d}\right)\right)
$$

whenever $1<|x|<30$, where $\left\{e_{i}: 1 \leq i \leq d\right\}$ are the standard basis for \mathbb{Z}^{d}.
3. (20 points) Assume the following version of:

Cramer's Theorem: Let $\left(X_{i}\right)$ be i.i.d. \mathbb{R}-valued random variables such that

$$
\begin{equation*}
0 \in \text { interior }\left\{t \in \mathbb{R}: \varphi(t)=\mathbb{E} e^{t X_{1}}<\infty\right\} \tag{1}
\end{equation*}
$$

Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then for all $a>\mathbb{E} X_{1}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq a n\right)=-I(a) \tag{2}
\end{equation*}
$$

where

$$
I(z)=\sup _{t \in \mathbb{R}}[z t-\log \varphi(t)] .
$$

Find I : when $X_{i} \sim$
(a) X with $\mathbb{P}(X=a)=1$ for some $a \in \mathbb{R}$.
(b) X where $\mathbb{P}(X=1)=\mathbb{P}(X=2)=\mathbb{P}(X=3)=\frac{1}{3}$.
4. (20 points) Consider a martingale where Z_{n} can take on only the values 4^{-n-1} and $1-4^{-n-1}$, each with probability $\frac{1}{2}$.
(a) Given that Z_{n}, conditional on Z_{n-1}, is independent of $Z_{n-2}, Z_{n-3}, \ldots, Z_{1}$ find $E\left[Z_{n} \mid Z_{n-1}\right]$ for each n so that the martingale condition is satisfied.
(b) Show that $\mathbb{P}\left(\sup _{n \geq 1} Z_{n} \geq 1\right)=\frac{1}{2} \neq 0=\mathbb{P}\left(\bigcup_{n \geq 1}\left\{Z_{n} \geq 1\right\}\right)$
(c) Show that for all $\epsilon>0, \mathbb{P}\left(\sup _{n \geq 1} Z_{n} \geq a\right) \leq \frac{\mathbb{E}\left[Z_{1}\right]}{a-\epsilon}$.

