1. (40 points) Let \mathcal{A}_n be the events that are observable by time n. Let $N \in \mathbb{N}$. Consider

 $\Omega_N = \{ \omega = (\omega_1, \omega_2, \dots, \omega_N) : \omega_i \in \{-1, +1\} \}$

equipped with the uniform distribution, denoted by $\mathbb{P} \equiv \mathbb{P}_N$. For $1 \leq k \leq N$, let $X_K : \Omega_N \to \{-1,1\}$ be given by $X_k(\omega) = \omega_k$ and for $1 \leq n \leq N$, let $S_n : \Omega_N \to \{-1,1\}$ be given by $S_n(\omega) = \sum_{k=1}^n X_k(\omega)$ and $S_0 = 0$.

- (a) Show that \mathcal{A}_n is closed under complimentation and intersections.
- (b) For $1 \le n \le N$, show that the mode of S_n is $\{0, 1\}$ that is

$$\max \left\{ \mathbb{P}(S_n = a) : a \in \mathbb{Z} \right\} = \begin{cases} \mathbb{P}(S_{2k} = 0) & \text{if } n = 2k, k \in \mathbb{N} \\ \mathbb{P}(S_{2k-1} = 1) & \text{if } n = 2k - 1, k \in \mathbb{N} \end{cases} = \binom{2k}{k} \frac{1}{2^{2k}}$$

(c) For $a < b, a, b \in \mathbb{Z}$, $1 \le n \le N$ show that

$$\mathbb{P}(a \le S_n \le b) \le (b - a + 1)\mathbb{P}(S_n \in \{0, 1\})$$

and conclude that $\lim_{N \to \infty} \mathbb{P}(a \leq S_N \leq b) = 0.$

(d) Let $-\infty < a < 0 < b < \infty, a, b \in \mathbb{Z},$

$$\sigma_a = \min\{k \ge 1 : S_k = a\} \quad \text{and} \quad \sigma_b = \min\{k \ge 1 : S_k = b\}.$$

(e) Let $a \in \mathbb{N}$ and $\sigma_a = \min\{k \ge 1 : S_k = a\}$. Show that

$$\mathbb{P}(\sigma_a = n) = \frac{a}{n} \mathbb{P}(S_n = a)$$

2. (20 points) For $x \in \mathbb{Z}^d$, let $|x| = \sum_{i=1}^d |x_i|$. Let S_n be the simple symmetric walk on \mathbb{Z}^d . Let

$$\tau_R = \inf\{n \ge 0 : |S_n| = R\}.$$

Let $h: \mathbb{Z}^d \to [0,\infty)$ be given by

$$h(x) = \mathbb{P}_x(\tau_{30} < \tau_1).$$

Show that

- (a) h(x) = 1 whenever $|x| \ge 30$
- (b) h(x) = 0 whenever $|x| \le 1$
- (c) h is harmonic on the set 1 < |x| < 30, i.e.

$$h(x) = \frac{1}{2d} \left(\sum_{i=1}^{d} h(x+e_d) + h(x-e_d) \right),$$

whenever 1 < |x| < 30, where $\{e_i : 1 \le i \le d\}$ are the standard basis for \mathbb{Z}^d .

3. (20 points) Assume the following version of:

Cramer's Theorem: Let (X_i) be i.i.d. \mathbb{R} -valued random variables such that

$$0 \in \operatorname{interior} \{ t \in \mathbb{R} : \varphi(t) = \mathbb{E} e^{tX_1} < \infty \}$$

$$\tag{1}$$

Let $S_n = \sum_{i=1}^n X_i$. Then for all $a > \mathbb{E}X_1$

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge an) = -I(a), \tag{2}$$

where

$$I(z) = \sup_{t \in \mathbb{R}} [zt - \log \varphi(t)].$$

Find I: when $X_i \sim$

- (a) X with $\mathbb{P}(X = a) = 1$ for some $a \in \mathbb{R}$.
- (b) X where $\mathbb{P}(X = 1) = \mathbb{P}(X = 2) = \mathbb{P}(X = 3) = \frac{1}{3}$.
- 4. (20 points) Consider a martingale where Z_n can take on only the values 4^{-n-1} and $1-4^{-n-1}$, each with probability $\frac{1}{2}$.
 - (a) Given that Z_n , conditional on Z_{n-1} , is independent of $Z_{n-2}, Z_{n-3}, \ldots, Z_1$ find $E[Z_n | Z_{n-1}]$ for each n so that the martingale condition is satisfied.
 - (b) Show that $\mathbb{P}(\sup_{n\geq 1} Z_n \geq 1) = \frac{1}{2} \neq 0 = \mathbb{P}(\bigcup_{n\geq 1} \{Z_n \geq 1\})$
 - (c) Show that for all $\epsilon > 0$, $\mathbb{P}(\sup_{n \ge 1} Z_n \ge a) \le \frac{\mathbb{E}[Z_1]}{a \epsilon}$.